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Abstract

The results of a theoretical study and numerical analysis of the role of capillary pressure of cold water injection into depleted geo-
thermal reservoirs are presented. A simplified 1-D mathematical model is developed, that describes the motion of a sharp vaporization
front. Some asymptotic estimates for a wide range of parameters are given and a similarity solution is derived. Analytical results are then
compared with those obtained from the numerical reservoir simulator TOUGH2, showing a good agreement between the two.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The influence of capillary forces on fluid flow in porous
media has been the subject of numerous theoretical and
experimental studies over the past decade. The aim of the
present study was to develop a mathematical model for a
better understanding of the physical processes occurring
in geothermal systems. One of the most important processes
in geothermal reservoirs under exploitation and/or recharge
is capillarity, as it has a substantial influence on fluid phase
changes. The effects of capillarity on phase changes are also
of significance to Hot Dry Rock technology. Capillary pres-
sure effects in porous rocks were studied, among others, by
Udell [1], Pruess and O’Sullivan [2], Pruess [3] and Li and
Horne [4,5]. Pruess and O’Sullivan [2] reported the numer-
ical simulations that were performed to evaluate the impact
of capillarity and vapour adsorption on the depletion of
vapour-dominated geothermal reservoirs.

The numerical simulator TOUGH2 [6] for multiphase
heat and fluid flow represents a powerful tool for modelling
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a large part of the wide spectrum of physical phenomena
occurring in geothermal reservoirs. However the treatment
of simpler physical situations, for which solutions exist in
a closed analytical form, is a necessary step towards our
understanding of the essential features of the phenomena
involved. Analytical solutions can, moreover, also prove
the behavior and accuracy of complex numerical simulators.

Frontal solutions play a fundamental role in the theoret-
ical investigation of phase transition problems. These solu-
tions imply that phase transition takes place over a narrow
region or sharp front that can be considered as a disconti-
nuity of the water saturation function, and that this inter-
face separates single-phase zones. This method has been
applied to geothermal reservoir modelling, as in, for exam-
ple, Udell [1], Pruess et al. [7], Garg and Pritchett [8],
Woods and Fitzgerald [9], Barmin and Tsypkin [10],
Woods [11] and Tsypkin and Woods [12]. As a rule, the
frontal formulation admits the derivation of an explicit
solution in some specific cases, and numerical methods
are usually verified by comparing their results with analyt-
ical solutions. Traditionally, derivation of the exact and
explicit solution is the first step in a new mathematical
model, providing insight into physical processes. Recently,
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Nomenclature

a thermal diffusivity [m2/s]
C specific heat [J/(K kg)]
Cp specific heat of vapour at constant pressure

[J/(K kg)]
d typical length scale of a pore [m]
k permeability [m2]
L length scale [m]
P pressure [Pa]
Pc capillary pressure [Pa]
Pf pressure at the flat surface [Pa]
q specific heat of vaporization [J/kg]
R gas constant [J/(kg K)]
R0 universal gas constant [J/(mol K)]
r mean radius of the capillary meniscus [m]
t time [s]
T temperature [K]
V velocity of the vaporization front [m/s]
Vm molar volume of water [m3/mol]
v filter velocity [m/s]
x coordinate [m]
X(t) position of the vaporization front [m]

Greek symbols

aw water compressibility coefficient [1/Pa]
D Laplace operator

c dimensionless similarity coordinate of the
vaporization front

j conductivity coefficient [m2/s]
h contact angle [degree]
k thermal conductivity [W/(m K)]
l viscosity [Pa s]
q density [kg/m3]
r surface tension [J/m2]
/ porosity
f dimensionless similarity variable

Subscripts

n normal
0 initial value
s porous medium skeleton
v vapour
w water
+ quantities to the right of the front
� quantities to the left of the front
� values of the quantities at the front
1 vapour domain
2 water domain

Superscript

0 boundary value
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we applied this analytical approach to the problem of
vapour extraction from water-saturated geothermal reser-
voirs [13,14].

In the present paper we extend our analysis to the prob-
lem of cold water injection into hot rock saturated with
superheated vapour, assuming that a sharp vaporization
front separates the water- and vapour-saturated zones.
This is a typical case in which the effects of capillarity on
heat and mass transfer processes in porous rocks play a
very important role.

The paper is organized as follows. In Section 2, a math-
ematical model of cold water injection into vapour-satu-
rated hot rock is developed. The injection process leads
to formation of the sharp liquid front that separates the
water-saturated and vapour-saturated regions. A full sys-
tem of boundary conditions at the interface, which takes
into account capillary forces, is then derived. In Section
3, the problem is reduced to a system of transcendental
equations by a similarity solution approach. Using asymp-
totic estimates and numerical modelling with TOUGH2,
the influence of capillary forces on the boiling process
induced by cold water injection is investigated. In Section
4 we compare the results of the analytical model and
numerical simulations, confirming that two different boil-
ing regime exist: (1) with formation of a two-phase transi-
tion zone and (2) with formation of a sharp vaporization
front. The conclusions are given in Section 5.
2. Problem formulation

Consider the injection of pure cold water into a high-
temperature geothermal reservoir saturated with super-
heated vapour. If the porous rock is initially superheated
then, as the injected liquid vaporizes, a boiling front devel-
ops, producing vapour ahead of the front. In order to
describe the dynamics and thermodynamics of liquid and
vapour flow through the porous rock we use Darcy’s law,
mass and energy conservation laws, and the equation of
state for water and vapour (see, for example, [15,16]). Being
the movement of water and vapour through porous media
usually slow, fluid and rock are assumed to be in local ther-
modynamic equilibrium, owing to thermal diffusion
between the solid and fluid [16].

2.1. Basic equations

In the vapour region, combining the equations for
vapour flow according to the above assumptions and laws,
the following system of two equations for the temperature
and pressure is obtained [14]:

oP v

ot
� P v

T
oT
ot
� k

/lv

ðgradP vÞ2

¼ � k
/lv

P v

T
gradP v gradT þ k

/lv

P vDP v ð1Þ
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ðqCÞ1
oT
ot
� k

lv

qvCp gradP v gradT ¼ divðk1 gradT Þ

k1 ¼ /kv þ ð1� /Þks; ðqCÞ1 ¼ /qvCv þ ð1� /ÞqsCs ð2Þ

Analogously, a system of two equations for the tempera-
ture and pressure is obtained for the water region. If
pressure is sufficiently less than 1/aw, then the mass conser-
vation equation can be simplified to the linear form

oP w

ot
¼ jDP w where j ¼ k

/awlw

ð3Þ

and the energy equation takes the form

ðqCÞ2
oT
ot
� k

lw

qwCw grad P w gradT ¼ divðk2 grad T Þ

k2 ¼ /kw þ ð1� /Þks; ðqCÞ2 ¼ /qwCw þ ð1� /ÞqsCs

ð4Þ
2.2. Boundary conditions

We assume that vaporization occurs at the sharp front
that migrates outwards from the injection well. The bound-
ary conditions across the front may be obtained from the
conservation of mass and energy, assuming that water
and vapour are in local thermodynamic equilibrium. These
relations are supplemented by the Clausius–Clapeyron
equation which determines the boiling pressure as a func-
tion of boiling temperature. Conservation of mass and
energy through the interface takes the form

/ 1� qv

qw

� �
V n ¼

k
lv

qv

qw

ðgradP vÞnþ �
k
lw

ðgradP wÞn� ð5Þ

/qqwV n þ
kqqw

lw

ðgradP vÞnþ ¼ k�ðgradT Þn� � kþðgrad T Þnþ

ð6Þ

Consider the action of capillary forces at the boiling front.
Mechanical and thermodynamic equilibria at the interface
require that the pressure gradient across the boiling front
be defined by the relation

P w ¼ P v þ P c ð7Þ

The capillary pressure value can be obtained from the
Laplace formula

P c ¼ �2
r
r

cos h ð8Þ

where r is the interfacial tension, h the contact angle and r
the mean radius of a capillary meniscus.

The influence of capillarity on phase transition at the
interface is characterized by the Kelvin equation

P v ¼ P f expðP KÞ; P K ¼ �
2rV m

R0

ffiffiffiffiffiffiffiffi
k=/

p ð9Þ

where Pf is vapour pressure at the flat surface.
In order to obtain the mean capillary pressure, we use
the well-known estimate for the typical length scale of a
pore

d ¼
ffiffiffiffiffiffiffiffi
/=k

p
ð10Þ

Since r = d/2, Eq. (8) for capillary pressure can be rewritten
as

P c ¼ �4r

ffiffiffiffi
/
k

r
cos h ð11Þ

For most real systems the contact angles cannot be mea-
sured accurately, with the result that some authors use
capillary pressure values as input data for numerical simu-
lations (see, for example, [2]).

We assume that all phases are in local thermodynamic
equilibrium and the temperature on the interface (x =
X(t)) is continuous; however the pressure jumps by the
capillary pressure

P w� � P c ¼ P v�; T w� ¼ T v� � T � ð12Þ

In this case, the equation of the Clausius–Clapeyron curve
may be written as

P v� ¼ P a exp A� Bþ P K

T �

� �
A ¼ 12:665; B ¼ �4697:28; P a ¼ 105 Pa

ð13Þ

To solve the problem we apply the following boundary and
initial conditions for the pressure and temperature

x ¼ 0 : P w ¼ P 0; T ¼ T 0

t ¼ 0 : P v ¼ P 0; T ¼ T 0

ð14Þ
2.3. Simplification of the basic equations

As the interface migrates slowly away from the injection
well bore, the pressure distribution across the water zone is
able to respond rapidly to changes in the front location,
owing to the very small compressibility of water. Formally,
this means that we can ignore the term on the left-hand side
of Eq. (3). This term has an order dP/tchar, and the term on
the right-hand side has an order kdP=/lwawL2

P , where dP

denotes the pressure variation, tchar is the characteristic
time and LP the characteristic length scale. The ratio of
the right-hand side to the left-hand side is equal to dimen-
sionless parameter

� ¼ tchar

L2
P

k
/lwaw

ð15Þ

In order to estimate �, we will use relation (5). As the first
term on the right-hand side is negative, by ignoring the
small ratio qv0=qw, we obtain

/V n < �
k
lw

ðgradP wÞn� ð16Þ

From (16) we obtain an inequality for the characteristic
values of the parameters
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L2
P

tchar

<
kdP w

/lw

or 1 <
tchar

L2
P

kdP w

/lw

ð17Þ

Owing to the inequality dP w � 1=aw, and using relation
(17), we obtain

1 <
tchar

L2
P

kdP w

/lw

� tchar

L2
P

k
/lwaw

ð18Þ

If the dimensionless parameter � is much larger than one
then the time derivative on the left-hand side of Eq. (3)
may be ignored; as a result we obtain a stationary equation
for the pressure in the water region, 0 < x < X ðtÞ
DP w ¼ 0 ð19Þ

or, for a one-dimensional system

d2P w

dx2
¼ 0 ð20Þ

Eq. (19) was derived without special assumptions and this
simplification allows to reduce the nonlinear energy equa-
tion (4) to a linear equation that describes advective and
conductive heat transfer in the water region

ðqCÞ2
oT
ot
� k

lw

qwCwC1

oT
ox
¼ k2

o2T
ox2

ð21Þ

Here, C1 is the constant of integration of Eq. (20).
As we are considering a relatively high-permeability res-

ervoir with high injection rate, we can expect that temper-
ature of the injected water ahead of the front has the same
order as the initial reservoir temperature because the drop
in temperature through the interface is controlled by the
vaporization process only. Assuming that the difference
between reservoir and vaporization pressure is small, the
linear approach can therefore be applied to the vapour
region [10]. As a result, we have a system of linear equa-
tions for the disturbances in the vapour region
X ðtÞ < x <1

oP 0v
ot
¼ j1

o
2P 0v
ox2

; j1 ¼
kP 0

/lv

ð22Þ

oT 0

ot
¼ a1

o
2T 0

ox2
; a1 ¼

k1

ðqCÞ1
ð23Þ

where P ¼ P 0 þ P 0, T ¼ T 0 þ T 0.

3. Similarity solution

In order to illustrate the typical features of the influence
of capillary pressure on water injection, we will consider
the one-dimensional linear injection problem. We assume
that the initial pressure P0, injection pressure P0, initial
temperature T0 and injection temperature T0 are constants.
The problem then admits a similarity solution

P ¼ P ðfÞ; T ¼ T ðfÞ;

X ðtÞ ¼ 2c
ffiffiffiffiffiffi
a2t
p

; f ¼ x
2
ffiffiffiffiffiffi
a2t
p ð24Þ
In the vapour region c < f <1, the pressure and temper-
ature distributions are given by

P v ¼ P 0 þ ðP v� � P 0Þ
erfcðf

ffiffiffiffiffiffiffiffiffiffiffiffi
a2=j1

p
Þ

erfcðc
ffiffiffiffiffiffiffiffiffiffiffiffi
a2=j1

p
Þ

ð25Þ

T ¼ T 0 þ ðT � � T 0Þ
erfcðf

ffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
Þ

erfcðc
ffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
Þ

ð26Þ

where erfcðzÞ is the complementary error function.
In the water region 0 < f < c, we obtain a linear distri-

bution for the pressure

P w ¼ P 0 þ ðP w� � P 0Þ f
c

ð27Þ

An exact solution for the temperature has the form

T ðfÞ ¼ T 0 þ ðT � � T 0Þ erfcðfþ AÞ � erfcðAÞ
erfcðcþ AÞ � erfcðAÞ

A ¼ kqwCw

2lwk2c
ðP w� � P 0Þ

ð28Þ

By combining the above solutions with the boundary con-
ditions (5), (6) and (13) we obtain two transcendental equa-
tions for the dimensionless unknown parameters c and T�

ffiffiffi
p
p

1� qv�
qw

� �
cþ j2

a2

ffiffiffi
p
p

2c
P v�

P 0

þ P c

P 0

� P 0

P 0

� �

þ
ffiffiffiffiffi
j1

a2

r
P v�

P 0

� 1

� �
expð�c2a2=j1Þ
erfcðc

ffiffiffiffiffiffiffiffiffiffiffiffi
a2=j1

p
Þ
¼ 0; ð29Þ

ffiffiffi
p
p

/qwqa2

T 0

cþ
ffiffiffi
p
p

2c
kqqw

lwT 0

ðP v� þ P c � P 0Þ

� k1

ffiffiffiffiffi
a2

a1

r
T �
T 0

� 1

� �
expð�c2a2=a1Þ
erfcðc

ffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
Þ

� k2

T �
T 0

� T 0

T 0

� �
expð�c2Þ

erfcðcÞ ¼ 0 ð30Þ

P v� ¼ P v�ðT Þ; qv� ¼
P v�

qwRT �
ð31Þ

These equations are solved numerically for the typical
values of the parameters.
3.1. Estimate of front velocity

Consider Eq. (29) at fixed initial reservoir temperature
and pressure. If injection pressure P0 increases then the
similarity velocity of the liquid front c will also increase.
The first two terms in Eq. (29) increase with the injection
pressure while the third term tends to a constant value
and may be ignored. Thus, we obtain a simple estimate
of the velocity of the liquid front as a function of parame-
ters and the injection pressure

cest ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

2a2

1� P w�

P 0

� �s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðqCÞ2
2k2/lw

ðP 0 � P w�Þ

s
ð32Þ



Table 1
Parameters used in numerical simulations

Formation parameters

Rock density 2600 kg/m3

Porosity .10
Thermal conductivity 2.51 W/m K
Specific heat of rock 920 J/kg K
Permeability 10�15–10�16 m2

Relative permeability

van Genuchten-Mualem
model

k = .4438, Slr = .081, Sls = 1,
Sgr = .01

Capillary pressure

van Genuchten function m = .4438, Slr = .0801, Sls = 1
1/P0 = 5.79 � 10�7 Pa�1

Pmax = 7.52–23.77 � 105 Pa

Reservoir initial conditions

Temperature 550 K
Pressure 2 MPa

Injection specifications
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It should be noted that as the third term in (29) describes
the vapour flux, the estimate corresponds to a piston-dis-
placement regime of water injection.

If we consider the vapour flux ahead of the front, the
estimate can be corrected using the smallness of the param-
eter c2a2=j1 and the first term of the expansions into series
of the complementary error function and exponent func-
tion. An estimate of the parameter c

ffiffiffiffi
a2

j1

q
gives a value of

about 0.27. As mentioned above, the deviation of the
vaporization temperature from the reservoir temperature
is small, with the result that we can use approximatively
P v� � P fðT 0Þ and q� � P fðT 0Þ=RT 0. Consequently, we
obtain a quadratic equation for the parameter c

c2
est þ S1cest þ S2 ¼ 0;

S1 ¼
ffiffiffiffiffiffiffi
j1

pa2

r
qv

qw

P v�

P 0

� 1

� �
; S2 ¼

j2

2a2

P w�

P 0
� 1

� � ð33Þ
Temperature 300 K
Pressure 8–14 MPa
The equation has two roots but the positive one only has a

physical meaning

cest ¼ �
S1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1

4
� S2

s
ð34Þ
These estimates show that for a relatively high-permeabil-
ity reservoir and a large flow rate the effect of heat redistri-
bution on the process is small and the process is close to a
piston-displacement regime.
Fig. 1. Typical temperature distribution as a function of similarity variable
for water injected into superheated wettable rock. Solid line – analytical
solution, dashed line – numerical result. h = 15� ðP c ¼ �7:52� 105 PaÞ,
T0 = 550 K, T0 = 300 K, k = 10�15 m2, P 0 ¼ 2� 106 Pa, P 0 ¼ 107 Pa.
4. Comparison of analytical solution and numerical

simulations

Numerical experiments were performed for typical
values of the system parameters shown in Table 1 to com-
pare numerical results and estimates from the simplified
analytical model, using the multiphase fluid and heat flow
simulator TOUGH2 [6]. We considered a 1-D homoge-
neous porous medium column with a relatively fine grid
near the injection point (500 elements with grid spacing of
1 m) to resolve the sharp thermal and phase fronts there.
For x > 500 m grid spacing was increased out to a total
length of 100 km (system infinite acting for the periods of
time simulated). Cross sectional area is 1 m2. The system
is initially saturated with superheated vapour at a uniform
temperature of 550 K and pressure in the range 0.5–
5 MPa. Cold (300 K) water injection at one end of the col-
umn is represented by a boundary element at constant tem-
perature and pressure. Initial reservoir conditions are
maintained constant at the other end of the system by
another boundary element.

Fig. 1 shows a typical distribution of the temperature as
a function of the similarity variable for a regime of high
injection rate. The vaporization process at the moving
front causes a decrease in phase transition temperature
owing to heat absorption. A small ‘‘boundary” layer near
the injection well is characterized by the value of the rock
heat conductivity coefficient. On the whole, Fig. 1 identifies
an excellent agreement between the analytical results and
numerical simulations.

Fig. 2 illustrates the typical pressure distributions for
neutral, wettable, and nonwettable rock. In the first case
the pressure is a continuous function, whereas in the other
two cases it has discontinuities. As capillary pressure Pc is
negative for the wettable rock, the pressure at the boiling
front is smaller than the vapour pressure ahead of the
front. For the nonwettable rock, when capillary pressure
is positive, the water pressure at the front is larger than
the vapour pressure. An increase in the water pressure at
the front decreases pressure gradient in the liquid region
and, respectively, water flux, so that the amount of injected



Fig. 2. Pressure distributions for three different contact angles. Results
obtained from analytical solutions. Solid, dashed and dotted lines denote
neutral, wettable and nonwettable media h ¼ 90	; 15	; 165	, respectively.
Other parameters as in Fig. 1.

Fig. 4. Variation of the liquid front as a function of injection pressure.
The solid line represents the exact analytical result; dashed line marks the
results obtained from relation (34); the dotted line shows the simplest
estimate (relation (32)) and the crosses mark the results of numerical
calculations. Profiles are shown for the same data as in Fig. 1.

3200 G.G. Tsypkin, C. Calore / International Journal of Heat and Mass Transfer 50 (2007) 3195–3202
water is larger for the wettable medium. In the case the cap-
illary pressure plays the role of a suction pressure.

Fig. 3 compares the analytical and numerical results for
the wettable rock. It is seen that the pressure gradient
calculated numerically has a band near the injection well
that corresponds to the narrow region in which tempera-
ture and viscosity vary considerably. The pressure gradient
is therefore larger in this domain, which is characterized by
large viscosity values. The pressure gradient near the well,
calculated from the analytical solution, is smaller than the
gradient obtained from numerical calculations, but is larger
behind the front, as the analytical solution uses the
arithmetic mean value for the water viscosity. For the wet-
table rock, the frontal analytical solution shows that the
pressure behind the interface falls below saturation pres-
sure, that indicates superheating of the water. In this case,
an extended water-vapour phase transition zone forms
between the water and vapour regions as showing numeri-
Fig. 3. Comparison of pressure distribution from analytical solution
(solid line) and numerical simulations (dashed line). Profiles are shown for
the same data as in Fig. 1.
cal simulations. This zone corresponds to the horizontal
part of the dashed line of the pressure distribution. As seen
here, the position of the sharp front obtained from analyt-
ical solution practically coincides with the middle of the
two-phase zone.

The different calculated values of c for a wettable rock
are presented in Fig. 4, which shows that the front velocity,
as quantified by c, increases with the injection pressure.
Comparison of both asymptotic estimates (dashed and dot-
ted lines) with the numerical simulation results shows a
very good agreement between the two. Some differences
may occur between the exact solution and numerical results
because of the comparatively rough estimate of the main
parameters used as functions of the arithmetic mean of
the temperature values in the analytical approach.

Fig. 5 presents the interface velocity, which is calculated
analytically for nonwettable, neutral and wettable media.
Fig. 5. Interface velocity versus reservoir pressure for nonwettable (curve
1, h = 165�), neutral (curve 2, h = 90�) and wettable (curve 3, h = 15�)
media. Profiles are shown for the same data as in Fig. 1.
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The velocity is seen to increase when the contact angle
decreases.

Fig. 6 illustrates how the speed of the liquid front varies
with rock permeability for other given parameters. The fig-
ure indicates that, in wettable media, the liquid front
always moves more rapidly.

When rock permeability decreases to k = 10�16 m2

(Fig. 7) then, as it follows from relation (11), the capillary
pressure increases and, in the case of nonwettable media,
for h = 165�, we obtain that P c ¼ 2:3� 106 Pa. For the
wettable rock, when h = 15�, P c ¼ �2:3� 106 Pa. Fig. 7
shows that, for a small injection rate (small injection pres-
sure P0), the speed of the liquid front depends mainly on
capillary pressure. As numerical calculations show, the
extended vaporization region is formed and in this case
Fig. 6. Interface velocity versus rock permeability for nonwettable (curve
1, h = 165�), neutral (curve 2, h = 90�) and wettable (curve 3, h = 15�)
media. Profiles are shown for the same data as in Fig. 1.

Fig. 7. Interface velocity versus reservoir pressure for nonwettable (curve
1, h = 165�), neutral (curve 2, h = 90�) and wettable (curve 3, h = 15�)
media. Open crosses mark the results of numerical calculations. Low-
permeability media k = 10�16 m2. Other parameters as in Fig. 1.
the analytical solution provides a rough estimate of the
parameters.
5. Conclusions

A simplified mathematical model of cold water injection
into hot permeable rock which includes the capillary pres-
sure effects was developed. An analytical solution was
derived and compared with the numerical simulations car-
ried out by TOUGH2 code [6]. Our analysis has established
that the predictions from the analytical solution are in
agreement with the numerical results and allow to obtain
a good estimate for the liquid front velocity.

We identified that the injection rate increases with the
capillary forces for a wettable rock and decreases for a
nonwettable media. Our results for the fixed porosity /
= 0.1 indicate that cold water injection into the hot rock
depends on capillary pressure if rock permeability is less
than 10�15 m2. For a small injection rate the velocity of
the liquid front is determined mainly by the capillary pres-
sure. Capillary forces in wettable media causes a formation
of an extended water-vapour phase transition zone which
separates the single-phase regions. It is shown in Fig. 7 that
for the low-permeability wettable rock the analytical
approach has good applicability for the high injection pres-
sure because the injection pressure reduces the extension of
the two-phase zone. If the water-vapour transition zone is
small then the analytical approach provides an adequate
result as uses the sharp front approximation. This result
is in contrast to the case with the relatively high permeabil-
ity and small injection pressure (Fig. 4) when the similarity
solution is in good agreement with the numerical result;
whereas, there is a large difference between the analytical
and numerical results for high injection rate.

As it may be seen in Fig. 1 for the large injection pres-
sure the extended plateau of high temperature and low vis-
cosity is formed. The decrease in the water viscosity leads
to the increase in the liquid flux and front velocity. This cir-
cumstance cannot be accounted for in the analytical solu-
tion, because the water viscosity is determined as the
mean arithmetic of the injection and reservoir pressure.
Therefore, the difference between the results of the two
methods for a large injection pressure may be caused by
a rough estimate of the water viscosity in the analytical
solution.

Comparison of the similarity and numerical approaches
provides a more effective way to full understanding of the
effect of capillary forces on injection rate and boiling
regime, and also identify the parameters at which simple
estimates from analytical solution can be applied.
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